Matematika Minat Kelas X MIPA 6 Senin 26 Oktober 2020
Jika suatu suku banyak f(x) berderajat n dibagi dengan (x - k), maka sisa pembagian S ditentukan oleh S = f(k). Jika suku banyak f(x) berderajat n dibagi dengan (ax + b), maka sisa pembagian s ditentukan oleh:S = f(−ba)Untuk lebih memahami pembagian suku banyak f(x) dibagi dengan (x - k) dan (ax + b), simak beberapa soal dan pembahasan teorema sisa berikut.
Soal dan Pembahasan Teorema Sisa Suku Banyak
Soal ❶
Jika suku banyak f(x) = x⁴ + 3x³ + x² - (p + 1)x + 1 dibagi oleh (x - 2) sisanya adalah 35. Nilai p = .....A. 4B. 3C. -4D. -3E. 0
Pembahasan:
f(x) = x⁴ + 3x³ + x² - (p + 1)x + 1 dibagi oleh (x - 2), maka sisanya adalah f(2).
f(2) = (2)⁴ + 3(2)³ + (2)² - (p + 1)(2) + 1
f(2) = 16 + 24 + 4 - 2p - 2 + 1
f(2) = 43 - 2p
Karena sisa = f(2) = 35, maka:
43 - 2p = 35
<=> -2p = 35 - 43
<=> -2p = -8
<=> p = -8/-2
<=> p = 4
(JAWABAN: A)
Soal ❷
Suku banyak 6x³ + 7x² + px - 24 habis dibagi oleh 2x - 3. Nilai p = .....A. -24B. -9C. -8D. 29E. 24
Pembahasan:
Misalkan f(x) = 6x³ + 7x² + px - 24
Karena f(x) habis dibagi oleh (2x - 3) maka sisa pembagiannya = f(32) = 0
f(32) = 6(32)³ + 7(32)² + p(32) - 24
f(32) = 6(278) + 7(94) + 3p2 - 24
f(32) = 1628 + 634 + 3p2 - 24
f(32) = 1628 + 1268 + 12p8 - 24
f(32) = 288+12p8 - 24
Karena f(32) = 0, maka:288+12p8 - 24 = 0
<=> 288+12p8 = 24
<=> 288 + 12p = 24 x 8
<=> 288 + 12p = 192
<=> 12p = 192 - 288
<=> 12p = -96
<=> p = -96/12
<=> p = -8
(JAWABAN: C)
Soal ❸
Fungsi f(x) dibagi (x - 1) sisanya 3, sedangkan jika dibagi (x - 2) sisanya 4. Jika dibagi x² - 3x + 2, maka sisanya adalah.....A. 2x + 1B. -x - 2C. x + 2D. 2x - 3E. x + 1
Pembahasan:
f(x) dibagi (x - 1) sisanya 3, maka f(1) = 3
f(x) dibagi (x - 2) sisanya 4, maka f(2) = 4Jika f(x) dibagi oleh x² - 3x + 2, maka diperoleh hasil H(x) dan sisa pembagiannya S(x). Sisa pembagian S(x) adalah berderajat 1.
Misalkan S(x) = px + q, maka:
f(x) = (x² - 3x + 2).H(x) + S(x)
f(x) = (x - 1)(x - 2).H(x) + (px + q)
Subtitusi nilai-nilai nol dari pembagi, yaitu x = 1 dan x = 2 ke persamaan f(x).
* Untuk x = 1
f(1) = (1 - 1)(1 - 2).H(1) + (p(1) + q)
<=> 3 = 0.(-1).H(1) + (p + q)
<=> 3 = p + q ...............(1)
* Untuk x = 2
f(2) = (2 - 1)(2 - 2).H(2) + (p(2) + q)
<=> 4 = 1.0.H(2) + (2p + q)
<=> 4 = 2p + q .............(2)
Eliminasi persamaan (1) dan (2), diperoleh:
p + q = 3
2p + q = 4 -
<=> -p = -1
<=> p = 1
Subtitusi nilai p = 1 ke persamaan (1) diperoleh q = 2.
Jadi, sisa pembagiannya adalah x + 2.
(JAWABAN : C)
Soal ❹
Suatu suku banyak f(x) dibagi dibagi (x + 2) sisanya -1, dan jika dibagi (x - 1) sisanya 2. Sisanya jika dibagi (x² + x - 2) adalah .....A. x - 4B. x + 3C. x + 2D. x - 2E. x + 1
Pembahasan:
f(x) dibagi (x + 2) sisanya -1, maka f(-2) = -1
f(x) dibagi (x - 1) sisanya 2, maka f(1) = 2Jika f(x) dibagi oleh x² + x - 2, maka diperoleh hasil H(x) dan sisa pembagiannya S(x). Sisa pembagian S(x) adalah berderajat 1.
Misalkan S(x) = px + q, maka:
f(x) = (x² + x - 2).H(x) + S(x)
f(x) = (x + 2)(x - 1).H(x) + (px + q)
Subtitusi nilai-nilai nol dari pembagi, yaitu x = -2 dan x = 1 ke persamaan f(x).
* Untuk x = -2
f(-2) = ((-2) + 2)((-2) - 1).H(-2) + (p(-2) + q)
<=> -1 = 0.(-3).H(-2) + (-2p + q)
<=> -1 = -2p + q ...............(1)
* Untuk x = 1
f(1) = (1 + 2)(1 - 1).H(1) + (p(1) + q)
<=> 2 = 3.0.H(1) + (p + q)
<=> 2 = p + q .............(2)
Eliminasi persamaan (1) dan (2), diperoleh:
-2p + q = -1
p + q = 2 -
<=> -3p = -3
<=> p = 1
Subtitusi nilai p = 1 ke persamaan (1) diperoleh q = 1.
Jadi, sisa pembagiannya adalah x + 1.
(JAWABAN : E)
Soal ❺
Jika f(x) dibagi oleh x² - x sisanya 5x + 1 dan jika dibagi x² + x sisanya 3x + 1, maka bila f(x) dibagi x² - 1 sisanya adalah .....A. -4x + 2B. 4x + 2C. 2x + 4D. 2x - 4E. -2x + 4
Pembahasan:
Jika f(x) dibagi oleh x² - x = x(x - 1) sisanya 5x + 1, maka:
f(0) = 5(0) + 1 = 1
f(1) = 5(1) + 1 = 6
Jika f(x) dibagi oleh x² + x = x(x + 1) sisanya 3x+ 1, maka:
f(0) = 3(0) + 1 =1
f(-2) = 3(-1) + 1 = -2
Pembagi x² - 1 berderajat 2 dan dapat difaktorkan menjadi (x+1)(x - 1) sehingga nilai-nilai nol pembagi itu adalah x = -1 dan x = 1.
Misalkan hasil baginya adalah H(x) dan sisa pembaginya S(x) = px + q, maka diperoleh hubungan:
f(x) = (x + 1)(x - 1).H(x) + (px + q)
* Untuk x = -1 f(-1) = ((-1) + 1)((-1) - 1).H(-1) + (p(-1) + q)
<=> -2 = 0.(-2).H(-1) + (-p + q)
<=> -2 = -p + q ..............(1)
* Untuk x = 1
f(1) = (1 + 1)(1 - 1).H(1) + (p(1) + q)
<=> 6 = 2.0.H(1) + (p + q)
<=> 6 = p + q ................(2)
Eliminasi persamaan (1) dan (2), diperoleh:
-p + q = -2
p + q = 6 -
<=> -2p = -8
<=> p = -8/-2
<=> p= 4
Subtitusi nilai p = 4 ke persamaan (1):
-p + q = -2
-4 + q =-2
<=> q = -2 +4
<=> q = 2
Dengan demikian S(x) = 4x + 2.
Jadi, sisa pembagiannya adalah 4x + 2.
(JAWABAN: B)
Soal ❻
Suku banyak P(x) dibagi oleh (x² - x - 2) sisanya (5x - 7), dan jika dibagi oleh (x + 2) sisanya -13. Sisa pembagian suku banyak oleh (x² - 4) adalaha.....A. 4x - 5B. x - 15C. -x - 15D. 5x - 4E. 8x - 5
Pembahasan:
Jika P(x) dibagi oleh x² - x - 2 = (x - 2)(x + 1) sisanya 5x - 7, maka:
P(2) = 5(2) - 7 = 3
P(-1) = 5(-1) - 7 = -12
Jika P(x) dibagi oleh x + 2 sisanya -13, maka:
P(-2) = -13
Pembagi x² - 4 berderajat 2 dan dapat difaktorkan menjadi (x - 2)(x + 2) sehingga nilai-nilai nol pembagi itu adalah x = 2 dan x = -2.
Misalkan hasil baginya adalah H(x) dan sisa pembaginya S(x) = px + q, maka diperoleh hubungan:
P(x) = (x - 2)(x + 2).H(x) + (px + q)
* Untuk x = 2 P(2) = (2 - 2)(2 + 2).H(2) + (p(2) + q)
<=> 3 = 0.(4).H(2) + (2p + q)
<=> 3 = 2p + q ..............(1)
* Untuk x = 1
P(-2) = (-2 - 2)(-2 + 2).H(-2) + (p(-2) + q)
<=> -13 = (-4).0.H(-2) + (-2p + q)
<=> -13 = -2p + q ................(2)
Eliminasi persamaan (1) dan (2), diperoleh:
2p + q = 3
-2p + q = -13 +
<=> 2q = -10
<=> q = -10/2
<=> q = -5
Subtitusi nilai q = -5 ke persamaan (1):
2p + q = 3
2p -5 = 3
<=> 2p = 3 +5
<=> 2p = 8
<=> p =8/2
<=> p = 4
Dengan demikian S(x) = 4x - 5.
Jadi, sisa pembagiannya adalah 4x - 5.
(JAWABAN: A)
Soal ❼
Diketahui suku banyak f(x) jika dibagi (x + 1) bersisa 8 dan dibagi (x - 3) bersisa 4. Suku banyak g(x) jika dibagi (x + 1) bersisa -9 dan jika dibagi (x - 3) bersisa 15. Jika h(x) = f(x).g(x), maka sisa pembagian h(x) oleh (x² - 2x - 3) adalah .....A. -x + 7B. 6x - 3C. -6x - 21D. 11x - 13E. 33x - 39
Pembahasan:
* f(x) dibagi (x + 1) sisanya 8, maka f(-1) = 8
f(x) dibagi (x - 3) sisanya 4, maka f(3) = 4
* g(x) dibagi (x + 1) sisanya -9, maka f(-1) = -9
g(x)dibagi (x - 3) sisanya 15, maka f(3) = 15
Karena h(x) = f(x).g(x), maka:
* h(-1) = f(-1).g(-1)
= 8 . (-9)
= -72
h(3) = f(3).g(3)
= 4 . 15
= 60Pembagi x² - 2x - 3 berderajat 2 dan dapat difaktorkan menjadi (x + 1)(x - 3) sehingga nilai-nilai nol pembagi itu adalah x = -1 dan x = 3.
Misalkan hasil baginya adalah H(x) dan sisa pembaginya S(x) = px + q, maka diperoleh hubungan:
h(x) = (x + 1)(x - 3).H(x) + (px + q)
* Untuk x = -1 h(-1) = (-1+ 1)((-1) - 3).H(-1) + (p(-1) + q)
-72 = 0.(-4).H(-1) + (-p + q)
-72 = -p + q ................(1)
* Untuk x = 3
h(3) = (3 + 1)(3 - 3).H(3) + (p(3) + q)
60 = 4.0.H(3) + (3p + q)
60 = 3p + q ..............(2)
Eliminasi persamaan (1) dan (2), diperoleh:
-p + q = -72
3p + q = 60 -
<=> -4p = -132
<=> p = -132/-4
<=> p =33
Subtitusi nilai p = 33 ke persamaan (1):
-p + q = -72
-33 + q = -72
<=> q = -72 + 33
<=> q = -39
Dengan demikian S(x) = 33x - 39.
Jadi, sisa pembagian h(x) oleh (x² - 2x - 3) adalah 33x - 39.
(JAWABAN : E)
Demikian postingan "Soal dan Pembahasan Teorema Sisa Suku Banyak" kali ini,mudah-mudahan dapat dipahami dan memudahkan anda menyelesaikan soal-soal yang berkaitan dengan teorema sisa suku banyak.
silahkan masuk ke kelas masing-masing untuk pembelajaran lebih lanjut dan akan di pandu oleh Pa Mitah Assidiqi, denga tautan sebagai berikut:
https://classroom.google.com/c/MTE2ODk2MDk1NTQy?cjc=oosukbt